This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



To cite this Article Souaya, E. R., Hanna, W. G., Ismail, E. H. and Milad, N. E.(2004) 'Preparation, characterization and determination of acid dissociation and stability constants of some acid divalent-metal 1:2 nitrilotriacetate complexes', Journal of Coordination Chemistry, 57: 10, 825 — 831

To link to this Article: DOI: 10.1080/00958970410001689094

URL: http://dx.doi.org/10.1080/00958970410001689094

# PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.



# PREPARATION, CHARACTERIZATION AND DETERMINATION OF ACID DISSOCIATION AND STABILITY CONSTANTS OF SOME ACID DIVALENT-METAL 1:2 NITRILOTRIACETATE COMPLEXES

### E.R. SOUAYA\*, W.G. HANNA, E.H. ISMAIL and N.E. MILAD

Department of Chemistry, Faculty Science, Ain Shams University, Egypt 11566

(Received 05 February 2003; Revised 23 May 2003; In final form 27 February 2004)

 $H_2[M^{II}(HNTA)_2] \cdot xH_2O$  complexes of eleven divalent metals were prepared. These complexes were characterized *via* elemental analysis, IR spectra, TGA, DTA and <sup>1</sup>H NMR. pKa<sub>1</sub> and pKa<sub>2</sub> of these acids were determined together with their log  $\beta_1$  and log  $\beta_2$  as metal complexes.

Keywords: Acid nitrilotriacetate;  $pKa_1$ ;  $\log \beta$ 

### INTRODUCTION

The importance of acid nitrilotriacetates stems from the various uses of H<sub>3</sub>NTA and its complexes especially in acid media. An immense number of publications on the use of H<sub>3</sub>NTA and its chelates, in different applied fields, are found in the literature. Water and soil studies showed that metals previously adsorbed on a sludge were completely immobilized in the presence of NTA. In addition, NTA is completely degraded during sewage treatment [1]. The removal of lead from contaminated soil using NTA was found to be pH dependent [2]. NTA was also used to ameliorate aluminum toxicity in acid soils [3]. Medical and biological studies showed that aliphatic amine salts of NTA inhibit the growth of bacteria and fungi and have herbicidal activity [4]. H<sub>3</sub>NTA and Na<sub>2</sub>HNTA increased the deposition of zinc and manganese in chick tibia [5]. Both Al<sup>III</sup>NTA and Fe<sup>III</sup>NTA caused bone growth retardation in rats [6]. Fe<sup>III</sup>NTA was also found to keep iron soluble and highly reactive in blood by providing "free" iron [7]. In rodents, Fe<sup>III</sup>NTA has been reported to induce a high frequency of adenocarcinoma localized to the proximal tubules of the kidney [8]. Al<sup>III</sup>NTA exhibited

<sup>\*</sup>Corresponding author. E-mail: eglals@yahoo.com

a similar effect in rats [9]. The mechanism of nephrotoxicity by Fe<sup>III</sup>NTA was found to be due to selective loss of renal protein [10]. Na<sub>3</sub>NTA fed to male rats caused urinary tract toxicity [11].

Despite the large number of publications on  $H_3NTA$  and its chelates in different applied fields, very little attention has been directed to structural studies. Tomita and Uneno [12] described the preparation and identification of some solid  $HM^{II}NTA$ complexes. The structure of [Bi(NTA)]  $\cdot$  2H<sub>2</sub>O was determined by single crystal X-ray studies. It was found that the ligand is completely deprotonated, so the resulting complex is neutral [13]. Single crystal X-ray diffraction was also used to demonstrate the structure of K<sub>2</sub>[VO(O<sub>2</sub>)NTA] [14]. The vanadium atom was found to have a distorted pentagonal pyramidal environment. The same technique [15] was similarly used to determine the structure of [Fe<sub>2</sub>(NTA)<sub>2</sub>(CO<sub>3</sub>)O]<sup>4-</sup>.

Recently we published a paper [16] on the preparation and characterization of  $HM^{II}NTA$  complexes and another [17] on the preparation and characterization of  $[Cr_2(NTA)_2] \cdot 3H_2O$  which was found to have a Cr–Cr bond.

The present study describes the preparation and characterization of some acid divalent-metal 1:2 nitrilotriacetates, determination of their pKa values as acids, and their log  $\beta$  values as metal complexes.

## **EXPERIMENTAL**

All chemicals used are of the A.R. or extra-pure grade.

The calculated amounts of the metal carbonates or basic carbonates of Mg, Ca, Sr, Ba, Zn, Cd, Pb, Mn, Co, Ni and Cu were mixed with H<sub>3</sub>NTA in the molar ratio 1:2 in about 100 mL of distilled water. The mixture was then heated nearly to boiling point until the reaction was complete. The solution was then left on a low flame until the volume was greatly reduced, followed by cooling in an ice bath where ill-defined crystals separated out on addition of a small amount of ethyl alcohol. The crystals were separated by filtration and recrystallized from boiling water, washed with ethyl alcohol and ether and kept in a vacuum desiccator over silica gel.  $pKa_1$  and  $pKa_2$  values were determined by titrating the aqueous solution of a known weight of the 1:2 complex against standard 0.05 N potassium hydroxide solution at  $25 \pm 0.2^{\circ}$ C. The method of calculation is fully described by Albert and Serjeant [18]. Log  $\beta_1$  and  $\beta_2$  were determined in exactly the same way as described for the determination of  $pKa_1$  and  $pKa_2$  except for adding 10 mL of 1 M KNO<sub>3</sub> solution in a total volume of 50 mL of the titrate in order to adjust the ionic strength. Calculations were then carried out using the KONST program [19] with its uncertainties and some statistical parameters necessary for the correctness of the fit. Moreover, the data are weighted, i.e. a smaller weight is given to the less accurate regions of the titration curve in which the change of dE(mV)/dVis large. Description of all apparatus and measurements of the present study are fully described elsewhere [17].

#### **RESULTS AND DISCUSSION**

The results of elemental analysis of the 1:2 complexes of Mg, Ca, Sr, Ba, Zn, Cd, Pb, Mn, Co, Ni and Cu are given in Table I. In order to determine whether the ligand

| Formula                                                     | M.wt. | Solubility g/L | M%    |       | С%    |       | H%    |       | N%    |       |
|-------------------------------------------------------------|-------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                             |       |                | Calc. | Found | Calc. | Found | Calc. | Found | Calc. | Found |
| H <sub>2</sub> [Mg(HNTA) <sub>2</sub> ] · 2H <sub>2</sub> O | 440.3 | 1.35712        | 5.45  | 5.84  | 32.70 | 32.47 | 4.54  | 4.01  | 6.36  | 6.30  |
| $H_2[Ca(HNTA)_2] \cdot H_2O$                                | 438.0 | 3.4657         | 9.13  | 8.70  | 32.88 | 32.50 | 4.11  | 4.50  | 6.39  | 6.40  |
| $H_2[Sr(HNTA)_2] \cdot H_2O$                                | 485.6 | 2.6125         | 18.04 | 17.72 | 29.65 | 29.35 | 3.71  | 3.88  | 5.77  | 5.91  |
| $H_2[Ba(HNTA)_2] \cdot 0.5H_2O$                             | 517.4 | 2.6031         | 26.54 | 26.82 | 27.83 | 27.67 | 3.10  | 2.96  | 5.41  | 5.18  |
| $H_2[Zn(HNTA)_2] \cdot 0.5H_2O$                             | 445.4 | 0.4360         | 14.68 | 15.52 | 32.33 | 32.24 | 3.59  | 4.00  | 6.29  | 6.27  |
| $H_2[Cd(HNTA)_2] \cdot 0.5H_2O$                             | 492.4 | 1.9490         | 22.83 | 22.50 | 29.24 | 28.94 | 3.25  | 3.50  | 5.67  | 5.50  |
| $H_2[Pb(HNTA)_2] \cdot 0.5H_2O$                             | 587.2 | 2.6280         | 35.29 | 35.40 | 24.52 | 24.26 | 2.72  | 2.84  | 4.79  | 4.46  |
| $H_2[Mn(HNTA)_2] \cdot 0.5H_2O$                             | 435.0 | 3.4452         | 12.63 | 12.60 | 26.97 | 26.88 | 3.68  | 4.00  | 6.44  | 6.63  |
| $H_2[Co(HNTA)_2] \cdot 2H_2O$                               | 475.0 | 1.4487         | 12.41 | 12.60 | 30.32 | 30.20 | 4.21  | 4.28  | 5.89  | 6.00  |
| $H_2[Ni(HNTA)_2] \cdot 3H_2O$                               | 492.7 | 2.2750         | 11.92 | 11.90 | 29.23 | 29.12 | 4.47  | 4.78  | 5.68  | 6.03  |
| $H_2[Cu(HNTA)_2] \cdot 0.5H_2O$                             | 443.5 | 8.0290         | 14.33 | 14.60 | 32.47 | 32.32 | 3.61  | 4.01  | 6.31  | 6.18  |

TABLE I Elemental analysis of 1:2 acid divalent-metal nitrilotriacetates



FIGURE 1 T.G.A. and D.T.G. of acid (1:2) Ba<sup>2+</sup> complex.

involved in these complexes is  $[NTA]^{3-}$  or  $[HNTA]^{2-}$ , a simple conductometric titration for a mixture of MCl<sub>2</sub> and H<sub>3</sub>NTA in the molar ratio 1:1 was carried out against standard 0.05 N KOH solution. Conductivity was found to decrease until 2/3 of the equivalent amount of KOH was added followed by an increase until the equivalence point was reached. This result shows that MCl<sub>2</sub> + H<sub>3</sub>NTA gives [M(HNTA)] + 2HCl and not H[M(NTA)] + 2HCl as conductometric titration of the latter products should show a continuous decrease in conductivity throughout the titration against potassium hydroxide.

Examination of the thermograms of these complexes (see, for example, Fig. 1) shows a relatively small weight loss below  $\sim 200^{\circ}$ C for complexes of Ba, Zn, Cd, Pb, Mn and Cu where x (number of water molecules)=0.5, while those of the remaining five complexes of Mg, Ca, Sr, Co and Ni, where x ranges from 1 to 3 exhibit larger weight losses. We have shown [17] that the parent ligand decomposes, on heating, in two overlapping steps into glycine and maleic acid. Glycine decomposes on further heating into methylamine and carbon dioxide. Maleic acid, on further heating, decomposes into either ethylene and carbon dioxide, or acetylene, carbon monoxide, carbon dioxide and water. The complexes under investigation decompose similarly to  $H_3NTA$ . The first and second steps of decomposition of the eleven studied complexes are given in Table II.

While the temperatures of the first weight loss are in the range  $225 \pm 25^{\circ}$ C, those of the second weight loss vary widely from 265°C for the zinc complex to 431°C for the copper complex. It may be suggested that both the ionic radius of the corresponding metal and the percent ionic character of the M–O bond are responsible for this phenomenon.

Interesting bands in the IR spectra of the solid complexes are tabulated in Table III. The band at  $3020 \,\mathrm{cm}^{-1}$  is probably due to the stretching frequency of O–H which is lowered *via* hydrogen bonding [21]. Intermolecular hydrogen bonding may explain the extremely low solubility of these complexes compared to those of EDTA.

<sup>1</sup>H NMR spectra of the ligand and the 1:2 calcium and barium complexes are given in Fig. 2. These spectra show two singlets, one at  $\approx 10.15-10.25$  ppm and a broad singlet signal  $\approx 10.20-11.60$  ppm for the calcium and barium complexes, respectively, as compared to  $\approx 11.20-11.45$  ppm for the ligand carboxylic protons. Signals due to protons subject to hydrogen bonding are usually found at  $\approx 10.10-13.40$  ppm [5].

In light of the above discussion and keeping in mind that the predominate species of  $H_3NTA$  in solutions of the complexes is  $[HNTA]^{2-}$  (Fig. 3), the formula of the acid 1:2 divalent-metal nitrilotriacetates may have the following structure.



The p $Ka_1$  and p $Ka_2$  values of the eleven acid complexes are given in Table IV. These values reveal moderately strong acids with p $Ka_1$  and p $Ka_2$  for H<sub>3</sub>NTA 1.89 and 2.49, respectively [22].

TABLE II Temperatures of first and second weight loss for the acid 1:2 divalent-metal nitrilotriacetates

| Divalent metal ion  | Mg   | Ca   | Sr   | Ba   | Zn   | Cd   | Pb   | Mn   | Со   | Ni   | Cu   |
|---------------------|------|------|------|------|------|------|------|------|------|------|------|
| 1st step °C         | 213  | 232  | 235  | 237  | 208  | 212  | 200  | 234  | 220  | 254  | 187  |
| 2nd step °C         | 430  | 378  | 352  | 369  | 265  | 374  | 268  | 421  | 350  | 324  | 431  |
| Ionic radius Å [20] | 0.65 | 0.92 | 1.13 | 1.30 | 0.74 | 0.97 | 0.83 | 0.79 | 0.74 | 0.72 | 0.65 |

| TABLE III Assignments of the vibrational bands of 1:2 acid divalent-metal NTA complexes (cm <sup>-1</sup> ) |       |           |      |     |     |                  |  |
|-------------------------------------------------------------------------------------------------------------|-------|-----------|------|-----|-----|------------------|--|
| Complex                                                                                                     | -СООН | -СООМ-СОО | О–Н  | М-О | M–N | $O - H \cdots O$ |  |
| H <sub>2</sub> [Mg(HNTA) <sub>2</sub> ] · 2H <sub>2</sub> O                                                 | 1740  | 1626-1440 | 3420 | 386 | 507 | 3020             |  |
| $H_2[Ca(HNTA)_2] \cdot H_2O$                                                                                | 1735  | 1637-1434 | 3460 | 355 | 536 | 3020             |  |
| $H_2[Sr(HNTA)_2] \cdot H_2O$                                                                                | 1733  | 1616-1440 | 3460 | 353 | 550 | 3020             |  |
| $H_2[Ba(HNTA)_2] \cdot 0.5H_2O$                                                                             | 1735  | 1673-1440 | 3450 | 334 | 534 | 3020             |  |
| $H_2[Zn(HNTA)_2] \cdot 0.5H_2O$                                                                             | 1735  | 1590-1435 | 3420 | 355 | 484 | 3020             |  |
| $H_2[Cd(HNTA)_2] \cdot 0.5H_2O$                                                                             | 1735  | 1578-1435 | 3420 | 355 | 484 | 3020             |  |
| $H_2[Pb(HNTA)_2] \cdot 0.5H_2O$                                                                             | 1735  | 1621-1435 | 3420 | 355 | 484 | 3020             |  |
| $H_2[Mn(HNTA)_2] \cdot 0.5H_2O$                                                                             | 1735  | 1578-1435 | 3420 | 355 | 484 | 3020             |  |
| $H_2[Co(HNTA)_2] \cdot 2H_2O$                                                                               | 1733  | 1579-1429 | 3400 | 343 | 560 | 3020             |  |
| $H_2[Ni(HNTA)_2] \cdot 3H_2O$                                                                               | 1733  | 1581-1431 | 3400 | 347 | 525 | 3000             |  |
| $H_2[Cu(HNTA)_2] \cdot 0.5H_2O$                                                                             | 1735  | 1594–1427 | 3440 | 380 | 563 | 3000             |  |



FIGURE 2 H NMR spectra of (a) nitrilotriacetic acid, (b) (1:2) Ca(NTA)<sub>2</sub> complex, and (c) (1:2) Ba(NTA)<sub>2</sub> complex.



FIGURE 3 Distribution on NTA species in KNO<sub>3</sub> medium.

Log  $\beta_1$  and log  $\beta_2$  for the eleven acid complexes are given in Table V. Comparing these values with those recorded in the literature for these metals with NTA we find marked differences in most cases. Literature values are generally higher and log  $\beta_1$  equals 12.96 for copper [22]. These large differences strongly support our assumption

| $(1:2) M^{II}$                  | $pKa_1$ | $pKa_2$ |
|---------------------------------|---------|---------|
| $H_2[Mg(HNTA)_2] \cdot 2H_2O$   | 2.49    | 4.63    |
| $H_2[Ca(HNTA)_2] \cdot H_2O$    | 2.94    | 3.35    |
| $H_2[Sr(HNTA)_2] \cdot H_2O$    | 3.18    | 3.49    |
| $H_2[Ba(HNTA)_2] \cdot 0.5H_2O$ | 3.11    | 4.21    |
| $H_2[Zn(HNTA)_2] \cdot 0.5H_2O$ | 3.19    | 3.99    |
| $H_2[Cd(HNTA)_2] \cdot 0.5H_2O$ | 2.50    | 2.99    |
| $H_2[Pb(HNTA)_2] \cdot 0.5H_2O$ | 2.78    | 4.35    |
| $H_2[Mn(HNTA)_2] \cdot 0.5H_2O$ | 2.94    | 4.24    |
| $H_2[Co(HNTA)_2] \cdot 2H_2O$   | 2.76    | 3.10    |
| $H_2[Ni(HNTA)_2] \cdot 3H_2O$   | 2.99    | 3.64    |
| $H_2[Cu(HNTA)_2] \cdot 0.5H_2O$ | 2.93    | 3.56    |

TABLE IV  $pKa_1$  and  $pKa_2$  of 1:2 acid divalent-metal nitrilotriacetates

TABLE V Log  $\beta 1$  and log  $\beta_2$  for the 1:2 acid divalent-metal nitrilotriacetates

| $(1:2) M^{II}$                  | $\log \beta_1$ | $\log \beta_2$ |
|---------------------------------|----------------|----------------|
| $H_2[Mg(HNTA)_2] \cdot 2H_2O$   | 7.63           | 14.64          |
| $H_2[Ca(HNTA)_2] \cdot H_2O$    | 7.41           | 14.22          |
| $H_2[Sr(HNTA)_2] \cdot H_2O$    | 8.79           | 17.10          |
| $H_2[Ba(HNTA)_2] \cdot 0.5H_2O$ | 8.74           | 17.03          |
| $H_2[Zn(HNTA)_2] \cdot 0.5H_2O$ | 7.95           | 15.30          |
| $H_2[Cd(HNTA)_2] \cdot 0.5H_2O$ | 8.41           | 16.21          |
| $H_2[Pb(HNTA)_2] \cdot 0.5H_2O$ | 8.35           | 16.02          |
| $H_2[Mn(HNTA)_2] \cdot 0.5H_2O$ | 8.05           | 15.49          |
| $H_2[Co(HNTA)_2] \cdot 2H_2O$   | 8.58           | 16.57          |
| $H_2[Ni(HNTA)_2] \cdot 3H_2O$   | 8.03           | 15.48          |
| $H_2[Cu(HNTA)_2] \cdot 0.5H_2O$ | 7.74           | 14.91          |

that the values obtained in the present study are those for the effective stability constants where the ligand is in the monoprotonated form [23].

#### References

- [1] S. Stoveland, N.J. Lester and R. Perry, Manage. Control Heavy Met., Environ. Int. Conf. 26 (1979).
- [2] G. Yuen, L.M. Lavkulich and C. Wang, Comm. Soil Sci. Plant Anal. 24, 1333 (1993).
- [3] L.M. Shuman, D.O. Wilson and E.L. Ramseu, Water, Air Soil Pollution 57, 149 (1991).
- [4] S. Weil and Edward, Appl. Chem. 830, 3 (1969).
- [5] M. Sifri, C.D. Lowry, F.H. Kratzer and L.C. Norris, J. Natr. 108, 719 (1978).
- [6] Y. Ebina, S. Okada, S. Hamazaki and Y. Toda, Calcified Tissue International 48, 28 (1991).
- [7] M. Liu, S. Okada and T. Kawabata, Acta Medica Okayama 45, 401 (1991).
- [8] S. Toyokuni and J.L. Sagripauti, Carcinogenesis 14, 2 (1993).
- [9] J. Deguchi, T. Kawabati, A. Rando and S. Okada, Jpn J. Cancer Res. 84, 649 (1993).
- [10] K. Uchida, A. Fukuda, S. Kawakiski and S. Toyokuni, Febs. Lett. 357, 165 (1995).
- [11] C.L. Alden, R.L. Candarva and S. Anderson, Vet. Parhol. 18, 549 (1981).
- [12] Y. Tomita and K. Uneno, Bull. Chem. Soc. Japn. 36, 1069 (1963).
- [13] G.J. Palenik, S.P. Summer and K.A. Aboud, J. Am. Chem. Soc. 207, 344 (1994).
- [14] Y.G. Wel, S.W. Zhang and G.Q. Huang, Polyhedron 13, 1587 (1994).
- [15] T. Fujita, S. Ohba, Y. Nishida, A. Goto and T. Tokii, Acta Crystallogr. C. 50, 544 (1994).
- [16] E.R. Souaya, W.G. Hanna, E.H. Ismail and N.E. Milad, Molecules 5, 1121 (2000).
- [17] Ibid, J. Coord. Chem. 55(9), 999 (2002).
- [18] A. Albert and E.P. Serjeant, The Determination of Ionization Constants (Chapman & Hall, London, 1984).
- [19] H. Stunzi and G. Anderegg, J. Coord. Chem. 7, 239 (1978).
- [20] F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (Interscience, New York, 1967).
- [21] D.L. Rabenstein and J. Kula, J. Am. Chem. Soc. 91, 2492 (1969).
- [22] L.G. Sillen, Stability Constants of Metal-Ion Complexes, Chemical Soc., Special Publication 25 (1971).
- [23] G. Wilkinson, R.D. Gillard and J.A. M'Cleverty (Eds.) Comp. Coord. Chem. 2, 789 (1987).